

Complexity and simplicity in eInfrastructures - some issues

Laurent Romary

Max Planck Digital Library

DINI meeting, Oldenburg, 8 Okt. 2007

What I will not speak about

- Long term archiving
- Publications and publication repositories
- Open access
- Grid computing
- eSciDoc... or you will not notice it

24.10.2007

Background

- Many initiatives to provide research infrastructures at national and EU level
- What do they or will they offer?
- Do we match the scientists' expectations?
- Access, standards and community building.
- ...with a view on the humanities

24.10.2007

Why do we need eInfrastructures?

The scientist's ecology

Central role of research data and primary sources

24.10.2007

The Scientist's (digital) ecology

Scientific information workflow

Working with research data

- Wide variety and complexity
 - High Energy Physics
 - Particle accelerators / colliders
 - Meteorology
 - Computer simulations
 - Astrophysics
 - Observations, stellar object descriptions
 - Biology
 - Spectrographic representations
 - Linguistics
 - Corpora, grammars, lexical databases

24.10.2007

Research Infrastructures

- RIs in general: permanent and physical
- RIs for the natural sciences
 - ice breakers for polar research, satellites, telescopes, particle accelerators, laboratories
- RIs for the humanities?
 - Cultural heritage in all forms is the main source of humanities research
 - Libraries and archives are the traditional "laboratories" for the humanities
- In the digital age, essential for innovative humanities research is:
 - Access to digitised heritage data (data bases, text corpora, speech, image collections, etc.)
 - Tools to process this information

Working with primary (digital) sources in the humanities

24.10.2007

Core activities

- Digitise Curate Preserve
 - Standards development and promotion
 - Curation, preservation and digitisation services
 - Technology platforms
 - Legal services and advice
- Discover Access Deliver
 - Authentication and authorisation,
 - Harvesting, aggregating, hosting
 - User-friendly discovery, delivery and use
- Connect Collaborate Use
 - Supporting communities of practice
 - Facilitating new research practice
 - Tools and registries

Some guidelines

- Mastering the technology
 - Not all scientist are technological geeks
 - Transparency
- Answering priority needs
 - Strong request to provide infrastructures for simple types of data
 - Pragmaticism
- Preserving scientific patrimony
 - High amounts of research data is continuously lost
 - Identification, preservation

Dealing with the complexity

- A selection of core issues
 - Standardisation
 - Tools
 - Documentation
 - Curation
- A specific application
 - Lexical data description

24.10.2007

Background: Representing lexical data

- First level of abstraction in linguistic analysis
 - Psycholinguistic, field linguistics, computational linguistics
- A huge amount of legacy information
 - Proprietary formats
 - Proprietary tools
 - E.g. Shoebox
- Variety of needs
 - Language description, dictionary making, automatic processing

24.10.2007

Issue 1: Can scientists bear standards?

- Standards are essentially bad for scientists
 - Freezing knowledge
 - Making one lose time that could be dedicated to research
 - Forcing diverging views to agree
- A positive view on standards
 - Documenting data
 - Giving semantics to data
 - Pooling data from various origins
 - Allowing interoperability of tools
- A possible answer
 - Standards as specification platforms
 - Example:
 - ISO committee TC 37/SC 4 (Language resource management)
 - LMF Lexical Markup Framework

ISO 24613 LMF: Lexical Markup Framework

Meta-model for morphological description

Decorating the model

For those who want to see some XML?

```
<struct type='lexical entry'>
    <feat type='lemma '>chat</feat>
    <feat type='grammatical category'>noun</feat>
    <struct type='morphology'>
           <struct type='paradigm'>
                       <feat type='paradigm identifier'>fr-s-plural</feat>
           </struct>
           <struct type='inflexion'>
                       <feat type='word form'>chat</feat>
                       <feat type='number'>singular</feat>
           </struct>
           <struct type='inflexion'>
                       <feat type='word form'>chats</feat>
                       <feat type='number'>plural</feat>
           </struct>
    </struct>
</struct>
```

24.10.2007

Providing semantics through data categories

Entry Identifier. grammatical gender

Profile: morpho-syntax

Definition (fr): Catégorie grammaticale reposant, selon les langues et

les

systèmes, sur la distinction naturelle entre les sexes ou

sur

des critères formels (Source: TLFi)

Definition (en): Grammatical category... (Source: TLFi (Trad.))

Object Language: fr

Name: genre

Conceptual Domain:

{/feminine/, /masculine/} Object Language: en //, Object Language: de

Name: gender

Name: grammatical

gender

Name: Geschlecht

Name: Genus

Conceptual Domain:

{/feminine/,

/masculine/, /neuter/}

Issue 2: Tools to make this transparent

- Expected functionalities
 - Data modelling
 - Data management
 - Legacy data recovery
- Example: Lexus
 - On-line lexical data management tool
 - Implemented at MPI for Psycholinguistic, Nijmegen
 - Fully implements LMF
 - Uses TEI/ODD for XML schema specification

24.10.2007

Data modelling

Data Category Usage Platform

Access to data categories

Integration in the model

Import from other formats(shoebox)

"Schema" and data files are imported

Import from other formats(shoebox)

Shoebox schema is remodeled to fit LMF model

Import from other formats(shoebox)

Standards as an emanation from scientific knowledge

Standard development

Scientific knowledge

Implementation

24.10.2007

Gathering expertise — Colab

Issue 3: documenting the complexity

- Standards are necessary, but the picture is complex
 - Legibility of data
 - In space: sharing scientific sources with others
 - In time: pooling together the records of science
 - Generic standards (horizontal)
 - ISO 10646/Unicode, XML, etc.
 - Specific standards
 - ISO-IEC/JTC 1 (MPEG), ISO/TC 37 (ISO 639, TMF), TEI
 - E.g. TEI:
 - A wide range of documented elements for the encoding of textual data
 - A flexible architecture to select the elements adapted to one's needs

24.10.2007

MPDL CoLaboratory (MPDL CoLab)

- Platform for community building and knowledge exchange
- Aim:
 - improve exchange of explicit knwoledge and make tacit and individual know-how explicit
- Supports community-building processes
 - Connects people with similar fields of interest and goals
 - within the MPS: MPDL, librarians, scientists
 - Outside: underlying basis of our national and international collaborations
- Provide information about existing standards and best practices in the domain of supporting scientific life cycles
 - Ensuring long-term compatibility between local and centralized initiatives within the MPDL

24.10.2007

QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image.

Issue 4: do we need libraries, or librarians

- Library as a place
 - Core reference monographies
 - Complementarity with centralized archives
 - Local management of primary sources
 - Selection, digitization, access
 - Library as digital curation centres
 - Centre of gravity of scientific information (cf. Bibliothek2007)
- Library as function
 - From information provision to information management
 - Identification of a "digital curator" profile: interface between scientists and scientific information
 - Local mirrors of central activities
 - We probably do need even more librarians...

Final words

- e-Infrastructures
 - We need them => which model fits which scientific community
- Communities
 - Sharing content and practices
- Helping scientist document the semantic of their data
 - Central role of data category registries
- Central-decentral (is it just a question for the MPS?)
 - A constant balance between contradictory forces
- Objective: simplicity for scientists

24.10.2007